• PROFESSIONAL CERTIFICATION IN SUPPLY CHAIN MANAGEMENT AND ANALYTICS
    Co-created with IIT Roorkee
    4.8 out of 5 by 469 learners
    4x
  • CERTIFICATION IN SOFTWARE ENGINEERING FOR CLOUD, BLOCKCHAIN AND IOT
    Co-created with IIT Guwahati
    4.8 out of 5 by 815 learners
    4x
  • CERTIFICATION IN ARTIFICIAL INTELLIGENCE and MACHINE LEARNING
    Co-created with IIT Guwahati
    4.8 out of 5 by 621 learners
    4x
  • Post Graduate Program in Analytics and Artificial Intelligence
    Co-created with UCLA Extension
    4.6 out of 5 by 1937 learners
    12 X industry demand
  • Machine Learning and Deep Learning Prodegree
    Co-created with IBM
    4.6 out of 5 by 3487 learners
    32 X industry demand
  • POST GRADUATE PROGRAM IN DATA ANALYTICS and MACHINE LEARNING
    4.8 out of 5 by 3278 learners
    14 X industry demand
  • Data Science Prodegree
    Co-created with KPMG in India
    4.7 out of 5 by 6233 learners
    16 X industry demand

The traditional machine learning approaches rely on using open-source tools for data analysis and prediction making. This approach does not work out well when the data is large. The RAM on the system gets damaged when large files like these are involved. We need to use an approach that not only helps us build the machine learning models successful but also ensures that the system is not burdened or damaged while an operation is being performed. Hence, we need to learn Distributed Computing in Machine Learning.

What is distributed computing?

An approach to improve the system performance, resolve scalability issues and increase the system efficiency by dividing the task being performed on a single machine to different systems is called distributed computing.

Distributed computing has many applications such as the world wide web, global financial systems, machine learning and much more. Here we concentrate basically on the concepts of Machine Learning Training with distributed computing.

Distributed computing training 

The main purpose of this training in machine learning is to help an individual master the skills in machine learning and resource allocation and management. Distributed computing came up as a technique to resolve the scalability associated with machine learning algorithms. It developed on a massive scale in recent years to provide large-scale operations such as big data analysis efficiently.

When we talk about distributed computing, there are two main approaches:

  1. Horizontal fragmentation- It uses an approach to store the selected portions of the available instance at different sites.
  2. Vertical fragmentation- Storing of the selected attributes of the subsets of the instances comprises of vertical fragmentation.

The data involved in machine learning is very massive if a real-time problem is involved. A situation might be encountered where the machine learning model needs to be trained again and again without disrupting the ongoing parallel task. In this situation, distributed computing serves as a boon by resolving the issues.

The training in distributed computing also highlights the importance of applying these techniques in fields such as medical computing where huge amounts of data are uploaded at every instance of the given time and need to be analyzed for relevant purposes.

Distributed machine learning platforms

Training in distributed computing for machine learning also provides information about the platforms that been developed to do so. Some of these platforms are listed below:

  • H2O- Developed by H2O.ai, H2O is an open-source platform for distributed computing in machine learning with in-memory support. It also provides support for traditional machine learning algorithms and includes AutoML functionalities.
  • TensorFlow- Distributed TensorFlow provides different servers each of which is considered to be a cluster and each process is made to run on an executive search engine.
  • DMTK- It stands for distributed ML toolkit and is developed by Microsoft to provide highly efficient techniques for performing a machine learning task.

Apart from the frameworks mentioned above, there are other frameworks such as Apache Spark Mlib and Apache Mount that assists in the machine learning applications as well.

Conclusion

Most of the problems that we encounter today are voluminous and very hard to process for machine learning tasks. Distributed computing left its footprints in the field of machine learning by solving one of the major issues that are big data handling. It has gained a lot of popularity in recent years because of its high degree of scalability, efficiency, and performance. It has not only helped in performing large-scale computations but has also helped in the optimization of the operating systems. To be accurate, it has revolutionized the world of machine learning training and computations.

Leave a Reply

For Online Course Enquiries
About Imarticus
Imarticus Learning is India’s leading professional education institute that offers training in Financial Services, Data Analytics & Technology. We’ve successfully transformed careers of over 35,000+ individuals globally through our Certification, Prodegree, and Post Graduate programs offered in association with leading and renowned global organisations in the Financial Services, Data Analytics & Technology domain.
Related course
  • Analytics
    PROFESSIONAL CERTIFICATION IN SUPPLY CHAIN MANAGEMENT AND ANALYTICS
    Co-created with IIT Roorkee
    Course duration()
    Upcoming batches
    1
    Organizations enrolled
    20
    4.8 out of 5 by 469 learners
    4x
    Upcoming Batches
    Date Location Schedule
    21st November ONLINE Online
    Date Location Schedule
  • Placement Assistance
    CERTIFICATION IN SOFTWARE ENGINEERING FOR CLOUD, BLOCKCHAIN AND IOT
    Co-created with IIT Guwahati
    Course duration()
    Upcoming batches
    1
    Organizations enrolled
    20
    4.8 out of 5 by 815 learners
    4x
    Upcoming Batches
    Date Location Schedule
    ONLINE Online
    Date Location Schedule
  • Placement Assistance
    CERTIFICATION IN ARTIFICIAL INTELLIGENCE and MACHINE LEARNING
    Co-created with IIT Guwahati
    Course duration(Months)
    8
    Upcoming batches
    1
    Organizations enrolled
    20
    4.8 out of 5 by 621 learners
    4x
    Upcoming Batches
    Date Location Schedule
    23rd October ONLINE Online
    Date Location Schedule
  • POST GRADUATE PROGRAM
    Post Graduate Program in Analytics and Artificial Intelligence
    Co-created with UCLA Extension
    Course duration(Weeks)
    28
    Upcoming batches
    2
    Organizations enrolled
    20
    4.6 out of 5 by 1937 learners
    12 X industry demand
    Upcoming Batches
    Date Location Schedule
    10th March CHENNAI Weekend
    Date Location Schedule
    27th March BANGALORE-KORAMANGALA Weekend
  • Prodegree
    Machine Learning and Deep Learning Prodegree
    Co-created with IBM
    Course duration(Months)
    4
    Upcoming batches
    3
    Organizations enrolled
    20
    4.6 out of 5 by 3487 learners
    32 X industry demand
    Upcoming Batches
    Date Location Schedule
    20th March CHENNAI Weekend
    27th March BANGALORE-KORAMANGALA Weekday
    Date Location Schedule
    20th March BANGALORE-KORAMANGALA Weekend
  • Post Graduation
    POST GRADUATE PROGRAM IN DATA ANALYTICS and MACHINE LEARNING
    Course duration(Months)
    5
    Upcoming batches
    1
    Organizations enrolled
    20
    4.8 out of 5 by 3278 learners
    14 X industry demand
    Upcoming Batches
    Date Location Schedule
    30th October CHENNAI Weekend
    Date Location Schedule
  • Prodegree
    Data Science Prodegree
    Co-created with KPMG in India
    Course duration(Months)
    2-4
    Upcoming batches
    1
    Organizations enrolled
    20
    4.7 out of 5 by 6233 learners
    16 X industry demand
    Upcoming Batches
    Date Location Schedule
    9th October ANDHERI Weekend
    Date Location Schedule