• POST GRADUATE DIPLOMA IN MANAGEMENT
    Co-created with BIMTECH
    4.8 out of 6071 learners
    2x industry demand
  • PROFESSIONAL CERTIFICATION IN SUPPLY CHAIN MANAGEMENT AND ANALYTICS
    Co-created with IIT Roorkee
    4.8 out of 5 by 469 learners
    4x
  • CERTIFICATION IN ARTIFICIAL INTELLIGENCE and MACHINE LEARNING
    Co-created with E&ICT Academy, IIT Guwahati
    4.8 out of 5 by 621 learners
    4x industry demand
  • POST GRADUATE PROGRAM IN DATA ANALYTICS and MACHINE LEARNING
    4.8 out of 5 by 3278 learners
    14 X industry demand

Machine learning is a vast field comprising of various data related operations such as analysis, prediction, decision making and much more. These applications require a set of well-defined steps to proceed with the idea designed for model construction. A set of well-defined instructions that produces some output or accomplishes a particular task is called an algorithm. The machine learning algorithms are broadly classified into 3 categories – Supervised, Unsupervised and Reinforcement Learning.

To choose an appropriate algorithm in machine learning, identifying the kind of problem is very necessary as each of these algorithms obeys a different plan of attack to deal with the proposed problem. Supervised learning uses an approach where the output is already known to the user or the individual while unsupervised learning concentrates on the concept of similarity in properties of the objects. Reinforcement learning differs from both of them and uses the art of learning from experiences.

Supervised learning

Supervised learning is used in machine learning tasks such as classification, regression, and analysis. It is considered as a concept that deals with labeled values. This means that the objects are categorized or assigned to different classes based on their properties. The algorithm implementation in supervised learning is done by a two-step procedure namely model construction and model utilization.

Firstly, the given data is cleaned and divided into training and testing sets. The model gains the ability to produce output by learning from the instances contained in the training set. The test set gives a measure of the model performance by producing accuracy. The accuracy indicates the amount or rather the percentage of unseen data that was computed correctly by the applied algorithm.

There are several metrics to determine the performance of the model and improve it if the performance is not up to the mark. This includes performing tasks like cross-validation, parameter tuning, etc. Hence, we can conclude that supervised learning uses labeled classes and target values to classify an unseen data point.

Unsupervised learning

In contrast to the supervised approach that already knows the predicted outcome, unsupervised learning uses the basis of similarity in properties to classify the unseen data points in the given n-dimensional space.

The main idea is to take a data point that is new to the given space, extract the behaviors of the data point, compare it with the already existing properties of the other objects and accordingly classify or categorize them into the appropriate group. The common examples of unsupervised learning are clustering, Apriori and K-means algorithm.

Reinforcement learning

Reinforcement learning is very similar to the animal kingdom where the animals do not train their offspring to perform a particular task but they leave them out in the ecosystem to learn from the experiences that it gains while struggling to accomplish a particular task.

The basic idea of performing reinforcement learning is to let the model learn on its own. It uses a trial and error strategy to gain knowledge from the available environment. According to the experiences gained from the conditions, it is exposed to, appropriate predictions and decisions are made. Markov Decision Process is an example of reinforcement learning.

Conclusion

Because of the wide variety of applications offered by machine learning, there are several Machine learning courses dedicated to offering the training in machine learning algorithms so that an individual can recognize the problem efficiently and work towards building an appropriate solution. Learning and understanding of machine learning algorithms are very easy. It just needs a proper classification of the interest in performing the desired operation.

For Online Course Enquiries
About Imarticus
Imarticus Learning is India’s leading professional education institute that offers training in Financial Services, Data Analytics & Technology. We’ve successfully transformed careers of over 35,000+ individuals globally through our Certification, Prodegree, and Post Graduate programs offered in association with leading and renowned global organisations in the Financial Services, Data Analytics & Technology domain.
Related course
  • Finance
    POST GRADUATE DIPLOMA IN MANAGEMENT
    Co-created with BIMTECH
    Course duration(Months)
    24
    Upcoming batches
    1
    Organizations enrolled
    20
    4.8 out of 6071 learners
    2x industry demand
    Upcoming Batches
    Date Location Schedule
    3rd August Live Instructor - Led Training Online
    Date Location Schedule
  • Analytics
    PROFESSIONAL CERTIFICATION IN SUPPLY CHAIN MANAGEMENT AND ANALYTICS
    Co-created with IIT Roorkee
    Course duration()
    Upcoming batches
    1
    Organizations enrolled
    20
    4.8 out of 5 by 469 learners
    4x
    Upcoming Batches
    Date Location Schedule
    21st November ONLINE Online
    Date Location Schedule
  • Placement Assistance
    CERTIFICATION IN ARTIFICIAL INTELLIGENCE and MACHINE LEARNING
    Co-created with E&ICT Academy, IIT Guwahati
    Course duration(Months)
    8
    Upcoming batches
    1
    Organizations enrolled
    20
    4.8 out of 5 by 621 learners
    4x industry demand
    Upcoming Batches
    Date Location Schedule
    23rd October ONLINE Online
    Date Location Schedule
  • Post Graduation
    POST GRADUATE PROGRAM IN DATA ANALYTICS and MACHINE LEARNING
    Course duration(Months)
    5
    Upcoming batches
    1
    Organizations enrolled
    20
    4.8 out of 5 by 3278 learners
    14 X industry demand
    Upcoming Batches
    Date Location Schedule
    30th October CHENNAI Weekend
    Date Location Schedule