• POST GRADUATE DIPLOMA IN MANAGEMENT
    Co-created with BIMTECH
    4.8 out of 6071 learners
    2x industry demand
  • PROFESSIONAL CERTIFICATION IN SUPPLY CHAIN MANAGEMENT AND ANALYTICS
    Co-created with IIT Roorkee
    4.8 out of 5 by 469 learners
    4x
  • CERTIFICATION IN ARTIFICIAL INTELLIGENCE and MACHINE LEARNING
    Co-created with E&ICT Academy, IIT Guwahati
    4.8 out of 5 by 621 learners
    4x industry demand
  • POST GRADUATE PROGRAM IN DATA ANALYTICS and MACHINE LEARNING
    4.8 out of 5 by 3278 learners
    14 X industry demand

Although plagiarism is not a legal concept, the general idea behind it is rather simple. It is about unethically taking credit for someone else's work. However, plagiarism is considered dishonest and might lead to a penalty. 

It is possible for coders to build their plagiarism checker in Python with the help of Machine Learning. Thus, it is advisable to undertake a python course to get a comprehensive idea about this programming language. 

Here, you will get an idea of creating your own plagiarism checker. Once finished, individuals can check students’ assessments to compare them with each other.  

Python Is Perfect for AI and Machine Learning

Python Is Perfect for AI and Machine Learning

Pre-requisites

To develop this plagiarism checker, individuals will need knowledge in python and machine learning techniques like cosine similarity and word2vec.

Apart from these, developers must have sci-kit-learn installed on their devices. Hence, if anyone is not comfortable with these concepts, then they can opt for an artificial intelligence and machine learning course

Installation    

How to Analyse Text 

It is not unknown that computers only understand binary codes. So, before computation on textual data, converting text to numbers is mandatory. 

Embedding Words  

Word embedding is the process of converting texts into an array of numerical. Here, the in-built feature of sci-kit-learn will come into play. The conversion of textual data into an array of numbers follows algorithms, representing words as a position in space. 

How to recognize the similarities between the two documents? 

Here, the basic concept of dot product can be used to check the similarity between two texts by computing the cosine similarity between two vectors. 

Now, individuals need to use two sample text files to check the model. Make sure to keep these files in the same directory with the extension of .txt.

Here is a look at the project directory – 

Now, here is a look at how to build the plagiarism checker 

  • Firstly, import all necessary modules. 

Firstly, use OS Module for text files, in loading paths, and then use TfidfVectorizer for word embedding and cosine similarity to check plagiarism. 

  • Use List Comprehension for reading files. 

Here, use the idea of list comprehension for loading all path text files of the project directory as shown –

  • Use the Lambda function to compute stability and to vectorize. 

In this case, use two lambda functions, one for converting to array from text and the next one to compute the similarity between two texts. 

  • Now, vectorize textual data. 

Add this below line to vectorize files.

  • Create a function to compute similarity 

Below is the primary function to compute the similarities between two texts.

  • Final code

During compilations of the above concept, an individual will get this below script to detect plagiarism.

  • Output 

After running the above in app.py, the outcome will look as – 

But, before you create this plagiarism checker, you might need to enroll for a python course or an artificial intelligence and machine learning course, as this programming needs concepts from python and machine learning. 

But, if you are willing to take programming as a career, a machine learning certification might be ideal for you. Nevertheless, to create a plagiarism checker of your own, make sure to use the steps mentioned above to detect similarities between the two files. 

Level 1
Copyscape Premium Verification 100% passed
Grammarly Premium Score 95
Readability Score 41.5
Primary Keyword Usage Done
Secondary Keyword Usage Done
Highest Word Density  To – 5.17%
Data/Statistics Validation Date 15/12/21
Level 2
YOAST SEO Plugin Analysis 5 Green, 2 Red
Call-to-action Tone Integration NA
LSI Keyword Usage NA
Level 3
Google Featured Snippet Optimization NA
Content Camouflaging NA
Voice Search Optimization NA
Generic Text Filtration Done
Content Shelf-life NA
For Online Course Enquiries
About Imarticus
Imarticus Learning is India’s leading professional education institute that offers training in Financial Services, Data Analytics & Technology. We’ve successfully transformed careers of over 35,000+ individuals globally through our Certification, Prodegree, and Post Graduate programs offered in association with leading and renowned global organisations in the Financial Services, Data Analytics & Technology domain.
Related course
  • Finance
    POST GRADUATE DIPLOMA IN MANAGEMENT
    Co-created with BIMTECH
    Course duration(Months)
    24
    Upcoming batches
    1
    Organizations enrolled
    20
    4.8 out of 6071 learners
    2x industry demand
    Upcoming Batches
    Date Location Schedule
    Live Instructor - Led Training Online
    Date Location Schedule
  • Analytics
    PROFESSIONAL CERTIFICATION IN SUPPLY CHAIN MANAGEMENT AND ANALYTICS
    Co-created with IIT Roorkee
    Course duration()
    Upcoming batches
    1
    Organizations enrolled
    20
    4.8 out of 5 by 469 learners
    4x
    Upcoming Batches
    Date Location Schedule
    21st November ONLINE Online
    Date Location Schedule
  • Placement Assistance
    CERTIFICATION IN ARTIFICIAL INTELLIGENCE and MACHINE LEARNING
    Co-created with E&ICT Academy, IIT Guwahati
    Course duration(Months)
    8
    Upcoming batches
    1
    Organizations enrolled
    20
    4.8 out of 5 by 621 learners
    4x industry demand
    Upcoming Batches
    Date Location Schedule
    23rd October ONLINE Online
    Date Location Schedule
  • Post Graduation
    POST GRADUATE PROGRAM IN DATA ANALYTICS and MACHINE LEARNING
    Course duration(Months)
    5
    Upcoming batches
    1
    Organizations enrolled
    20
    4.8 out of 5 by 3278 learners
    14 X industry demand
    Upcoming Batches
    Date Location Schedule
    30th October CHENNAI Weekend
    Date Location Schedule